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Abstract—The brain is a nonlinear computational system; how-
ever, most methods employed in finding functional connectivity
models with functional magnetic resonance imaging (fMRI) data
produce strictly linear models — models incapable of truly
describing the underlying system.
Genetic programming is used to develop nonlinear models

of functional connectivity from fMRI data. The study builds
on previous work and observes that nonlinear models contain
relationships not found by traditional linear methods. When
compared to linear models, the nonlinear models contained
fewer regions of interest and were never significantly worse
when applied to data the models were fit to. Nonlinear models
could generalize to unseen data from the same subject better
than traditional linear models (intrasubject). Nonlinear models
could not generalize to unseen data recorded from other subjects
(intersubject) as well as the linear models, and reasons for this are
discussed. This study presents the problem that many, manifestly
different models in both operators and features, can effectively
describe the system with acceptable metrics.
Index Terms—Computational Neuroscience; Functional Con-

nectivity; Functional Magnetic Resonance Imaging; Genetic Pro-
gramming; Symbolic Regression.

I. INTRODUCTION

The brain is a provably nonlinear computational system1.

Although the literature explicitly acknowledges this [1], [2],

[3], [4], [5], [6], it is deemphasized or ignored, especially

when working with functional Magnetic Resonance Imaging

(fMRI) data. To better understand the brain as a computational

system, researchers will create functional connectivity models

of the brain — network relationship models of the statistical

relationships between the spatially distributed regions of the

brain during cognition. Despite being an intrinsically nonlinear

system, almost all strategies for functional connectivity mod-

eling use linear tools (Pearson Product-moment correlation

coefficient, general linear model).

The benefit of using linear tools is that they, and the

models they produce, are easily understood; often, simpler

tools and models are desirable. Finding nonlinearities is a

non-trivial task, especially when faced with large amounts of

1A human can simulate a Turing machine, therefore they are at least as
powerful as a Turing machine — a nonlinear computational system.

high-dimensional data. Sophisticated nonlinear tools introduce

more degrees of freedom, are more computationally expensive,

and in many cases produce hard to interpret models; however,

perhaps using a powerful method capable of describing the

nonlinearities will help us understand the intricacies of the

nonlinear dynamic complex system — the brain.

In addition to understanding the brain as a distributed

natural information processing system, functional connectivity

models have important clinical applications. These functional

networks manifest differently in individuals with certain neural

disorders, such as Alzheimer’s [7] and schizophrenia [8], when

compared to otherwise healthy control subjects. By improving

model effectiveness with better modeling technologies, finer

details and differences may be distilled, making it possible to

differentiate between cohorts of interest.

Although nonlinear tools have been developed and stud-

ied, they remain underrepresented within the neuroscience

literature. Friston et al. use nonlinear tools such as Volterra

series expansion to study the balloon model [5], [9] and

dynamic causal modeling to study effective connectivity —

a modeling technique similar to functional connectivity which

incorporates temporal dynamics [10]. Kruggel et al. used a

form of nonlinear regression to model relationships between

the hemodynamic response and stimulus conditions [11]. Semi-

parametric Volterra series was used by Zhang et al. to find

nonlinearities [12]. With symbolic regression, Allgaier et al.

found novel nonlinear relationships within known networks in

resting state fMRI data [13], [14]. Hughes & Daley used sym-

bolic regression to develop nonlinear functional connectivity

models of task based fMRI data. Not only did the nonlinear

models fit their data better, but they contained fewer relation-

ships when compared to linear models [15], [16]. Jackson et

al. performed a similar analysis to that done by Hughes &

Daley with independently gathered data. They found similar

results and demonstrated that the nonlinear models did not

overfit the data any more than typical linear methods [17].

In this work Genetic Programming (GP) will be used to

perform Symbolic Regression. GP is a computational intelli-

gence technique where, through a strategy based on the natural



process of evolution, the algorithm writes (evolves) its own

programs to solve problems [18]. Symbolic regression is a

regression technique that not only searches for coefficients,

but also for the structure of the model. This allows for a more

powerful regression capable of finding nonlinear relationships

with fewer assumptions when compared to typical linear

regression. Since we are using GP for symbolic regression, the

programs being written by GP are mathematical expressions.

We build upon the work of Hughes & Daley [15], [16];

we develop nonlinear models of real fMRI data gathered from

subjects performing a variety of tasks. These models provide

interpretable functional connectivity network relationships be-

tween brain areas to ultimately give new insight into the

underlying system. The motivation is not to create predictive

models, but to develop descriptive models; the goal is the

generation of interpretable functional connectivity model, not

to collect the model’s output. These objectives are ultimately

one and the same since an accurate descriptive model will be

capable of prediction, and we are using accuracy/prediction

to measure quality, but the subtle difference is emphasized to

frame the motivation for the creation of these models.

This work focuses on the application of GP to real data from

a real world problem to make novel contributions to another

fields. Although the fMRI data was recorded and preprocessed

carefully to ensure the highest quality data possible, there are

still many concessions that need to be made when working

with this real data regardless of the mathematical techniques

used for modeling. These are discussed within Section II.

Although this is based on the observations and contributions

of previous work, we begin the analysis from scratch based on

newly generated models. In this work we include additional

subjects for greater insight and statistical significance. We also

expand the analysis performed to include a deeper model

validation investigation by applying models to unseen data

recorded from the same subject (intrasubject generalization)

and unseen data from subjects the models were not fit to

(intersubject generalization).

Nonlinear models were generated that fit their data and

generalized to unseen data from the same subject better than

the traditional linear models; however, the nonlinear models

could not generalize to unseen data from different subjects

as well. The authors discuss why the linear models may be

better at intersubject generalization (fitting all data well, but no

specific subject/task effectively) and the practicality and real

utility of it from a neuroscientific perspective. We finish with

remarks on the difficulty of model selection when presented

with a collection of different models with similar error values.

II. NEUROSCIENTIFIC DATA

The data studied in this work was obtained from the Human

Connectome Project, WU-Minn Consortium2 (HCP) — a large

online database of neuroimaging data. Full details on the data

and preprocessing pipelines are made available by the HCP. As

2http://www.humanconnectome.org/

Fig. 1: A three-dimensional snapshot of the four-dimensional fMRI data. Each voxel
in this snapshot contains its BOLD signal from a single time point. If the recording had

t time points, then there would t snapshots for that recording.

of January 2019, the database contains structural MRI, resting-

state fMRI, diffusion imaging, and task-based fMRI data for

roughly 1200 subjects, and Magnetoencephalography (MEG)

data for resting-state and tasks on a subset of the participants.

We focus on the task-based fMRI recordings. This data

are recorded from subjects performing a task while inside

an fMRI scanner. The scanner records the changing blood

oxygen level dependent (BOLD) signal — a measure of the

relative oxygenation level of blood within tissue — over time

which can be used to indicate functional activation. Although

the exact nature of the BOLD signal is not well understood

[3], it has been shown to be an effective proxy for brain

activation [19], [20], [21]. Like many real world problems,

the recorded data has many deficiencies. The BOLD signal

is notoriously noisy, spatially diffused, has a relatively low

temporal resolution, difficult/expensive to obtain (sparse), and

lags behind actual neural activity.

The BOLD signal from the three-dimensional brain over

time is recorded and represented as voxels (Figure 1). Voxels

are three-dimensional analogues to two-dimensional pixels;

just as a pixel in a gray scale image would contain the intensity

value of the localized pixel, a voxel in the brain contains the

localized BOLD signal.

This four-dimensional data (three-dimensional snapshots of

the brain over time’s one dimension) can be represented as

a two-dimensional matrix of voxels by flattening the three-

dimensional physical space into one long vector and treat-

ing time as the second dimension. Each entry in the two-

dimensional matrix corresponds to the BOLD signal intensity

of a single voxel at some time point. The actual number of

voxels depends on the resolution of fMRI scanner; modern

hardware with a resolution on the order of 2-5mm3 can cap-

ture hundreds of thousands of voxels. Although each voxel’s

size is on the order of millimeters, it contain tens of thousands

of neurons. Similarly, the number of time points depends on

the hardware and overall duration of the experiment. Modern

scanners are capable of capturing whole brain volumes at a

frequency of 0.75Hz – 2Hz.

The seven tasks performed by subjects for the recordings

include: Emotion Processing (176 time points/127s), Gambling

(253 time points)/182s), Language (316 time points/228s),

Motor (284 time points/204s), Relational Processing (232

time points/167s), Social Cognition (274 time points/197s),

and Working Memory (405 time points/292s). The temporal

resolution of the scans were 720ms per sample (∼1.389Hz).

Given the significant computational cost of developing the

nonlinear models (discussed in Section IV-B), data from all

tasks for forty of the 1200 subjects were arbitrarily chosen



and analyzed. Since fMRI data is difficult and expensive to

obtain, it is common to have a very limited amount of data

from the same subject performing the exact same task. This

makes it difficult to test the effectiveness of functional con-

nectivity models, regardless of the modeling technique used.

Fortunately, each subject had two separate recordings for each

task (one left-to-right (LR) phase encoding direction, and one

right-to-left (RL) — the direction of applied gradient required

for fMRI data acquisition [21]). The phase encoding does

not affect the data between the two separate scans, therefore,

for simplicity the LR phase encoding data was used as the

training data, and the RL was used as independent testing

data (although the choice was arbitrary). Given the sparsity

and few number of time points for the fMRI recordings, we are

precluded from splitting the data further into a validation set

as there would be far too few data points to fit to. The authors

want to clearly acknowledge this limitation; however, the use

of fitness predictors (discussed in Section IV-A) provides a

limited pseudo validation set throughout evolution.

Data was z-score (standard score) normalized since data

from the fMRIs were not already normalized between ses-

sions. The data was segmented into 30 meaningful regions of

interest (ROIs) with Craddock et al.’s spatially constrained

parcellation [22]. Each ROI’s value is the mean BOLD signal

from all voxels within it. Multiple resolutions were explored

and 30 ROIs consistently produced high quality models. A

higher resolution is desirable; however, 30 is not out of line

with other ROI based neuroscientific studies and allowed for

the generation of models in a reasonable amount of time. It is

expected that higher or lower resolutions would work similarly

well in general (as shown in [17]). A high level overview of

the ROIs can be found in Table I.

After preprocessing, the data was represented as a two

dimensional matrix of 30 columns of ROI average BOLD

signal intensities and t rows, where t is the number of time

points for a given task.

III. NEUROSCIENTIFIC MOTIVATION

Neuroscientists generate functional connectivity models of

the brain to better understand the underlying system. If we

generate effective models, we can study the models to discover

which areas of the brain are functionally connected. Although

error values can indicate model accuracy, the model itself is

of interest, not the output of the models.

Almost all task based fMRI studies employ linear methods

to generate models. These methods include Pearson product-

moment correlation coefficient and the Generalized Linear

Model (GLM). The typical strategy used to develop a func-

tional connectivity model is as follows. If one wanted to derive

how a given ROI X was functionally connected to all other

ROIs, one would (1) calculate the correlation between ROI

X’s timeseries to all other ROIs and (2) perform some correc-

tion for multiple comparisons (false discovery rate (FDR) or

Bonferroni correction (BC)). (3) Statistically unrelated ROIs

are eliminated and the (4) remaining ROIs will be used as

regressors in our linear regression to ROI X. (5) The resulting

TABLE I: Region of interest number and corresponding neuroanatomical region.
This table provides a frame for the resolution of the brain segmentation.

Region of Interest # Description

1 Visual (V1)

2 Insula/Medial Temporal (MT)
3 Cuneus

4 Posterior Ventral Temporal
5 Memory
6 Prefrontal Cortex (PFC)

7 Temporal Pole/Amygdala
8 Auditory (Middle/Lateral Temporal)

9 Intraparietal
10 Insula/Medial Temporal (MT)

11 Cerebellar
12 Thalamys/Midbrain
13 Intraparietal/Calculations

14 Prefontal/Orbitalfrontal Cortex (OFC)
15 Temporal Pole/Amygdala

16 Language Associated Prefrontal Cortex
17 Fusiform/Ventral Temporal
18 Prefrontal Cortex (PFC)

19 Lateral Occipital
20 Auditory (Middle/Lateral Temporal)

21 Medial Frontal/M1 area
22 Somatosensory/Premotor (M1/S1)

23 Somatosensory/Premotor (M1/S1)
24 Fusiform/Ventral Temporal
25 Lateral Occipital

26 Cingulate
27 Medial Orbitalfrontal Cortex (OFC)

28 Prefontal/Orbitalfrontal Cortex (OFC)
29 Language Associated Prefrontal Cortex
30 Anterior Cingulate Cortex (ACC) & Prefontal

functional connectivity model and beta weights will be used

to indicate which areas of the brain are functionally related

during a task, and to what extent. In other words, the linear

equation generated is simply analyzed to determine which

ROIs it contains and what their beta weights are.

These methods assume that the underlying system is linear;

however, we know this to be incorrect. It also treats ROIs as

fixed values as opposed to random variables (weak exogene-

ity). Other assumptions include: constant variance in the data,

independence of errors, a lack of multicollinearity, and that

the residuals are not autocorrelated.

Thresholding is done to eliminate statistically unrelated

ROIs before regression as one would only want to include

meaningful ROIs as regressors. However, what does it mean

for an ROI to be meaningfully related? All ROIs are a part

of a larger, connected system being recorded at the same

time, under the same circumstances, in the same environment

susceptible to the same noise factors. Ultimately, many ROIs

are highly correlated, and even after thresholding, one is

typically left with a large number of ROIs being statistically

related (sometimes even all). It is possible that the entire brain

is involved in the task being studied, but this seems unlikely.

Despite the drawbacks, there are many reasons to use simple

models; complex models tend to overfit, are hard to interpret,

and typically have greater computational costs to generate.

But, perhaps by using a more powerful method we can find

more accurate and descriptive models of the brain. There

are many approaches one could employ to find nonlinearities

within the data. One could perform linear regression of many

nonlinear basis functions to obtain very low errors, but these

would overfit significantly, and how does one select such basis



functions? An artificial neural network would likely fit the data

well; however, it would be difficult to interpret the resulting

model. Here we use symbolic regression to replace steps 1

– 4 discussed above because it performs feature selection, is

at least as expressive as linear regression, eliminates many of

the assumptions the linear methods make, and it produces a

symbolic model that can be interpreted in a similar way to

what is already done with the linear models (step 5).

IV. METHODS

A. Genetic Programming Implementation

A GP system based on Schmidt et al.’s work was developed

[23]. This system is specialized for symbolic regression and

includes many improvements to increase performance and

speed. Although many ideas are incorporated into the system,

noteworthy ones include fitness predictors [24], [25] and an

acyclic graph representation [26]. This GP system has also

been shown to be robust to noise [27]. These ideas are

summarized below, but full descriptions are available from

their respective sources. The implementation of the GP system

has been made available online [28].

Fitness predictors reduce the computational cost of the

search by approximating the local search gradient [24], [25].

Chromosomes are only evaluated on a representative subset

of data that emphasizes the search on areas of the space

candidate solutions disagree the most — if the population

has no consensus on an area, then the search may benefit by

focusing on that area. This subset of data is always evolving

throughout the search as the data points required to create

the disagreement between candidate solutions will depend on

the current population. Given that only a small and dynamic

subset of data is being fit to at a given time, it provides a

pseudo/simulated automatic validation throughout evolution.

Although there are similar techniques [29], this method was

selected since it not only lowers computational cost by reduc-

ing the number of data points needed for evaluation, but it has

also been shown to reduce overfitting, focus on key features,

and improve results.

Figure 2 provides a high level view of the execution of the

search. There are two major routines: Solutions and Predictors.

Solutions executes like a standard evolutionary algorithm

with subpopulations evolving independently and recombining

periodically until some stopping criteria is met. Predictors

select the fitness predictors to be used to calculate the fitness

values of the evolving candidate solutions.

An acyclic graph representation is used in this work as it

has a lightweight encoding, scales well, avoids bloat, and has

the ability to easily reuse subexpressions. Many graph based

encodings exist in the literature, but the implementation de-

scribed by Schmidt et al. was used for the above reasons [26].

Figure 3 shows an example of the phenotype implemented

in the system used and demonstrates how it represents an

acyclic graph. In our implementation, array indexes 0 and 1

must be terminals (literal or variable). The last index in the

array is the root of the tree. Each element in the array will

reference some number of lower indexes: 2 if the element is
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Fig. 2: High level view of the algorithm execution. Two major sections: Solutions

depicts the flow of evolving candidate solutions; Predictors shows the flow of the evolving
fitness predictors. Dashed lines denote communication between the solution and predictor

routines. Evolving candidate solutions use the current predictors to evaluate their fitness.
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Fig. 3: a, b, and c all represent the expression 2 · x + x. a represents the typical

tree-based representation. b shows how the tree based structure could be represented as
an acyclic graph. c shows how the acyclic graph can be represented as an array. It is

important to note that this representation will not simplify the expression to 3x.

a binary operator, 1 if it is a unary operator, and 0 if it is a

terminal. Some elements are non-coding genes (denoted as ?)

that do not impact the phenotype. It has been shown that these

non-coding genes can function as some vestigial memory and

become expressed later in evolution with positive effects [26].

B. Genetic Programming Settings

The system parameters used are presented in Table II. These

values were determined through preliminary tests; however, no

significant parameter sweep was performed.

Crossover was a simple one-point crossover. The strategy

for mutation was to randomly select a gene and replace it

with a randomly chosen operator/terminal from the language.

The mutation rate was set high as a mutation may have no

change on the phenotype due to the nature of the acyclic graph

encoding (non-coding genes).

TABLE II: Parameter settings for GP System. The last 4 settings are specific to the
improvements discussed in IV-A.

Elitism 1

Population 101/subpopulation (707 total)

Subpopulations 7

Migrations 10,000

Generations 1,000 per migration (10,000,000 total)

Crossover 80%

Mutation 10% (x2 chances)

Fitness Metric Mean Squared Error: 1
n

∑n
i=1(Ŷi − Yi)

2

Language +, − ,∗ , /, exp, abs, sin, cos, tan

Trainers 8

Predictors 20

Predictor Pop. Size 25% of Dataset

Max # Graph Nodes 140



Evolution concludes once a predefined number of genera-

tions have occurred.

The language was selected to be at least as powerful as

linear regression (arithmetic operators), and to have nonlinear

operators: absolute value for point nonlinearity, e for exponen-

tiation, and trigonometric operators since any periodic function

can be expressed as a sum of sine waves. Although these

operations can frequently be observed in nature and there is

no reason that they cannot be found within the data, we make

no assertion that they necessarily exist within brain function

as no reference for such a thing exists.

The choice of 7 subpopulations was because the evolution-

ary search was performed on systems with 8 core processors,

and with the addition of fitness predictors evolving on a single

core, a total of 8 threads were effectively utilized.

A total of 7,070,000,000 mating events could occur for ev-

ery model. These values are excessive by orders of magnitude,

however any marginal improvement may result in a better

description of the underlying system.

Given the stochastic nature of the search and the varying

amounts of data in each task, each execution of the search

took between 24 and 124 hours (in the most extreme cases)

when running with 8 cores on an IBM System x iDataPlex

dx360 M3 node with 2 quad-core Intel Nehalem (Xeon 5540)

processors running at 2.53GHz.

C. Experimental Methods

Forty subjects with data from all seven tasks were studied

(280 datasets total). For symbolic regression, to improve the

significance and quality of results, 100 models were generated

for each subject and task. For linear regression, six different

ways of generating models were investigated: (1) fitting all

ROI; (2) performing FDR and thresholding then fitting; (3)

performing BC and thresholding then fitting; (4) fitting all

ROIs with LASSO regression; (5) performing FDR and thresh-

olding then fitting with LASSO regression; (6) performing BC

and thresholding then fitting with LASSO regression. Least

absolute shrinkage and selection operator (LASSO) regression

is used in some of the neuroscience literature, and it typically

generates smaller models compared to typical linear regres-

sion. Previous work found that symbolic regression selected

very few ROIs compared to linear regression [16], so it is of

interest to compare symbolic regression to a linear method

with similarly succinct models (LASSO).

The authors emphasize that they are comparing six de-

terministic linear methods to one nondeterministic nonlinear

method. Given the stochastic nature of the modeling technique,

it is necessary to create many models for each subject/task

combination. In the neuroscience literature it is common to

generate a single linear model for each subject/task. We make

clear that comparing 100 nonlinear models to six introduces

bias into the analysis and take special care to remind the reader

of this where appropriate.

For both linear and symbolic regression, an ROI known to

be involved with the task was chosen to be the dependent

variable (y) and all other ROIs are used as the regressors (X).

For example, ROI 21 was selected as the dependent variable

for the motor task as it is the ROI containing the primary motor

cortex. The dependent variable for the emotion, gambling,

language, motor, relational, social, and working memory tasks

were ROIs 7, 2, 12, 21, 28, 3, and 21 respectively.

V. RESULTS AND DISCUSSION

A. Model Effectiveness

Table III contains summary statistics for the top models for

each subject on all tasks. Although 100 nonlinear models were

generated for each subject and task, only the top performing

model was analyzed here. We also include a Mann-Whitney U

test’s p-value obtained by comparing the nonlinear and linear

models’ distributions of mean absolute errors (MAEs) from

all subjects performing the same task. The results show that

nonlinear models are comparable to the linear when applied

to the data they were fit to. The only linear modeling strategy

capable of consistently outperforming the nonlinear models

was when all ROIs were used in regular linear regression;

however, they were never significantly better. Additionally,

this linear strategy is not employed in the literature as these

models would likely overfit and provide no neuroscientific

insight since they used all features (a model containing all

ROIs would indicate that every ROI is functionally related to

all other ROIs for that subject/task).

Figure 4 presents a p-value transition plot. This plot was

generated by comparing the top nonlinear models’ errors

from all subjects to the errors from a linear model fit with

increasingly more ROIs. The p-value is represented as color

and each column corresponds to different tasks. The first row

compares the nonlinear models to linear models fit with the

top one linearly correlated ROI (to the ROI chosen to be the

dependent variable). More ROIs are added in the order of

absolute correlation score until all ROIs are included (the last

row). The average number of ROIs (over all subjects) in a

linear model with BC and FDR is written on the plot along

with the average number of ROIs in all (100) nonlinear models

generated for each subject (NL-A-) and the average number

of ROIs in the top nonlinear model for each subject (NL-T-).

This plot shows that the average number of ROIs in the

nonlinear model is much less than those generated with linear

regression. It also shows that nonlinear models are signifi-

cantly better than linear models fit with few, top correlated

ROIs. However, as the number of ROIs in the linear models

increases, the difference disappears. The last row corresponds

to the last column in Table III where we see that the best

linear models are not significantly better than nonlinear. This

plot does not include the LASSO models as the ROIs in those

models are not determined based on correlation scores. The

number of ROIs in the linear models generated with LASSO

was typically between 7 – 11 which is much more comparable

to the number of ROIs in the nonlinear models; however, as

seen in Table III, the LASSO models typically have worse

MAEs than the nonlinear models.

Although the models are symbolic, they can be fairly

intricate. The authors do not suggest taking a nonlinear model



TABLE III: Summary statistics (median and in interquartile range (IQR)) for all generated models along with probability values obtained with a Mann-Whitney U test when
comparing the MAEs of the nonlinear models to the respective linear model.

Nonlinear BC LASSO FDR LASSO BC FDR ALL LASSO ALL

Mdn IQR Mdn IQR p-Val Mdn IQR p-Val Mdn IQR p-Val Mdn IQR p-Val Mdn IQR p-Val Mdn IQR p-Val

EMOTION 0.39 ±0.06 0.49 ±0.08 1.08e-04 0.47 ±0.07 2.81e-04 0.41 ±0.09 1.29e-01 0.39 ±0.08 4.11e-01 0.47 ±0.07 5.44e-04 0.37 ±0.06 2.00e-01
GAMBLING 0.32 ±0.06 0.37 ±0.07 1.58e-02 0.36 ±0.07 1.65e-02 0.31 ±0.06 3.17e-01 0.3 ±0.06 2.77e-01 0.36 ±0.07 1.65e-02 0.3 ±0.06 2.58e-01
LANGUAGE 0.28 ±0.03 0.39 ±0.04 4.02e-10 0.38 ±0.04 4.28e-10 0.28 ±0.04 2.19e-01 0.27 ±0.03 4.87e-01 0.38 ±0.04 6.92e-10 0.26 ±0.03 1.79e-01
MOTOR 0.23 ±0.04 0.32 ±0.05 8.94e-08 0.32 ±0.05 9.41e-08 0.23 ±0.05 4.90e-01 0.23 ±0.05 3.52e-01 0.32 ±0.05 1.16e-07 0.23 ±0.04 1.89e-01

RELATIONAL 0.23 ±0.05 0.31 ±0.05 2.50e-05 0.31 ±0.05 2.71e-05 0.22 ±0.06 4.41e-01 0.22 ±0.05 3.20e-01 0.31 ±0.05 2.82e-05 0.22 ±0.05 2.58e-01
SOCIAL 0.3 ±0.04 0.44 ±0.07 5.12e-10 0.42 ±0.06 6.52e-10 0.33 ±0.06 5.56e-02 0.31 ±0.05 3.38e-01 0.42 ±0.06 9.89e-10 0.29 ±0.04 2.80e-01
WM 0.26 ±0.05 0.31 ±0.06 3.35e-04 0.31 ±0.06 3.72e-04 0.25 ±0.05 4.18e-01 0.25 ±0.05 3.59e-01 0.31 ±0.06 3.72e-04 0.25 ±0.05 2.71e-01

Fig. 4: Comparing linear and nonlinear models’ MAEs (averaged over all subject) as
the number of ROIs used to create the linear model increases. ROIs were added to the

linear models in the order of their absolute correlation score. The number of ROIs in
the nonlinear models was fixed.

Fig. 5: Number of subjects for each ROI (column) that appeared in the top model for
each task (row). Counts for the nonlinear (NL) and LASSO generated linear (L) models
are presented. 40 is maximum. Note that the ROI corresponding to the dependent was

in all models.

and expecting it to be an exact representation of the functional

connectivities. It is not the specific operators found in the

model, but the presence of ROIs and the fact that they are

related in some nonlinear way that is of interest. Figure 5

shows how often each ROI appeared in the 40 subjects’ models

for each task. The first matrix shows the results for the top

nonlinear models and the bottom three show the results from

three linear. Although all matrices are similar, the one for

the nonlinear is the most distinct. Not only are the nonlinear

models effective, but they contain somewhat different ROIs.

For example, ROI 27 (Medial Orbitalfrontal) appeared in many

nonlinear models of the language task, but was not found in

many linear models — perhaps this is an important functional

relationship that has been missed by traditional tools. Only the

LASSO models are shown since the regular linear regression

models typically contained nearly all (if not all) ROIs.

B. Intersubject Generalizability

Although it has been observed in the literature that there

is a large intersubject variability in network models [30], it

is still of interest to test our models’ ability to generalize to

other subjects. Figure 6 contains matrices showing how well

models generalize to unseen data from different subjects. The

matrices were generated by applying models from all subjects

and tasks to every other subject and task’s data. The MAEs

were then averaged over all subjects performing the same task.

Only the LASSO linear models are included as the others

did not generalize to other subjects as well. The diagonals

are of particular interest as they show how well, on average,

models for a specific task can fit data from other subjects

performing the same task. The three linear models generalize

to other subjects similarly well, and significantly better than

the nonlinear models. However, it should be noted that the

LASSO models also fit all other task’s data well. Perhaps these

LASSO models are not as capable of describing task specific

nuances. It can be seen that the nonlinear models’ accuracy

matrix is very dependent on the task, and although the matrix

is of model MAEs when applied to different data, it provides

some visualization of which task’s models can fit independent

tasks’ data similarly well (somewhat of a similarity matrix).

Take note of the similarity between the Motor and Working

Memory Task. Both tasks used ROI 21 as the dependent

variable. Perhaps the similarity is a consequence of the choice

of independent variable, or maybe there is some functional

similarities between these tasks.

C. Intrasubject Generalizability

If we take the top nonlinear model and the 6 linear models

and apply them to unseen test data from the same subject and

task, we can compare the resulting MAEs and use the differ-

ence as a way to understand overfitting. Although the task was

the same in the unseen data, the order in which the subtasks

were done during each task (eg. moving hand, foot, tongue)

were different. Fortunately, this should not matter since the

models are temporally independent. Figure 7 plots the training

and testing errors against each other. Unsurprisingly, nearly all

points for all models are above the y = x line, indicating that

the models obtain better errors on the data they were fit to.

Given the stochastic nature of the evolutionary search, a

total of 100 nonlinear models were generated for each subject

and task combination for statistical power and to increase our

chance of obtaining high quality models. We apply these 100

models, which should all be reasonably effective, to the unseen

testing data from the same subject performing the same task.



Fig. 6: Matrices showing the MAE values obtained by applying every task/subject combination’s models to all other datasets and averaged over all subjects performing the same
task. The diagonal provides a means of quantifying intersubject generalization; if all subject’s models on the same task can fit all other subject’s data from that task similarly well,

then the models are capable of generalizing between subjects.

Fig. 7: Scatter plot comparing the training and testing MAEs for all models. For the nonlinear model, the top model on the training data was compared to it’s error when applied
to unseen data. The difference between the training and testing errors averaged over all subjects in tasks for each model are: NL – 0.20, BC LASSO – 0.10, BC – 0.10, FDR
LASSO – 0.18, FDR – 0.19, All LASSO – 0.11, and ALL – 0.21.

Fig. 8: Distribution of MAE values when applying all 100 nonlinear models to unseen

data from the same subject performing the same task. Vertical lines correspond to the
MAEs obtained by linear models.

Figure 8 shows the distribution of MAEs from the 100 models

along with vertical lines indicating the MAEs from the 6 linear

models fit to the same data as the nonlinear and applied to the

same unseen data. From this one example we can see that

some number of the 100 nonlinear models performed better

than the best linear.

Distributions like Figure 8 can be generated for each of

the 280 subject and task combination. Figure 9 was gener-

ated by plotting the best nonlinear model’s error (left most

error from the respective distribution) against the best linear

model’s. Each point on these plots corresponds to a different

subject. Points above the y = x line indicate that a nonlinear

model was best at generalizing to unseen data from the

same subject. The further away from this line the greater the

difference between the nonlinear and linear model’s error. The

overwhelming majority of these points are above this line,

suggesting that, in general, a nonlinear model can generalize

to unseen data from the same subject better than the linear.

Table IV shows the average difference between the models

TABLE IV: Average difference between the best nonlinear and linear models’ MAEs
when the respective column’s model was best. The values are averaged over all subjects
performing the same task. Eg: for the emotion task, when nonlinear models were better

than linear, they were on average better by 0.041.

Task # Nonlinear Better Linear Better

Emotion 0.041 0.023
Gambling 0.044 0.013

Language 0.031 0.022
Motor 0.045 0.022

Relational 0.043 0.014
Social 0.034 0.015

W. Memory 0.039 0.010

when the respective column’s model type was best. Not only

were more nonlinear models better, but when they were better,

they were better by more than when linear models were better.

The authors want to make very clear that they acknowledge

the bias being introduced in this section; we have 100 nonlin-

ear models to choose from and only 6 linear to choose from.

The only way to confirm the generalizability of any of these

models is to apply the selected models to new unseen data.

Unfortunately, a third set of data for each subject and task is

not available and this confirmation is not currently available.

Although these results are still meaningful, this limitation is

important to keep in mind when interpreting these results.

Figure 9 only compares the best nonlinear model found

when applied to unseen data. However, for each subject, it

is likely that more than just one of the 100 nonlinear models

obtained a lower error than the best linear model. Figure 10

shows a distribution of how many nonlinear models were

better than the best linear model for all subjects (if such

models exist). Simply, when referring to Figure 8, it would

be the number of nonlinear models to the left of the leftmost

(smallest) linear model’s error. These numbers were collected

for all subjects and the distributions are plotted for each task.

For many subjects, numerous nonlinear models generalized to



Fig. 9: Scatter plot comparing the smallest MAE from the 100 nonlinear models when applied to unseen data versus the best of the 6 linear models. Points above the y = x
line indicate that the nonlinear model was best. Points below indicate that a linear model was best. Color indicates method for model generation.

TABLE V: Mann-Whitney U test p-values for comparing the originally selected

nonlinear model for intersubject generalization (lowest error on training) to the model
selected based on its performance at intrasubject generalizability (lowest error on

intrasubject testing) — denoted by pseudo.

Task # pseudo vs org. pseudo vs LASSO ALL

Emotion 2.05e-01 5.97e-57
Gambling 1.22e-03 4.36e-23

Language 7.36e-07 7.71e-03
Motor 4.45e-07 4.54e-35

Relational 2.40e-03 3.70e-16
Social 6.56e-22 2.59e-11

W. Memory 7.34e-08 5.52e-13

unseen data better than the best linear, suggesting that these

nonlinear models are meaningful and, while still acknowledg-

ing the bias, perhaps more capable of generalizing to unseen

data from the same subject than linear models.

Although we unfortunately do not have a third set of data

for each subject, we can use the other subjects’ data from

the same task as a pseudo third dataset. Understanding that

the data is not obtained from the same random variable, we

can still apply the top model on unseen data from the same

subject to this pseudo third dataset. Similar to Figure 6, Figure

11 shows how well the best same subject generalizing models

fit all other subject’s data. When comparing the matrices

for the nonlinear models, with the exception of the emotion

and motor task, we observe a significant improvement in

intersubject generalization. However, the better generalizing

nonlinear models were still significantly worse than the best

linear models. Table V contains the relevant p-values.

D. Model Selection Problem

The purpose of generating these models is to find a de-

scriptive model that can provide insight into the underlying

system. Since we have no actual target, we use the error

values to indicate model quality. Here in lies a significant

problem. We have a collection of high quality models, both

linear and nonlinear. Although some have smaller errors than

others, and since the error can only be used as a proxy for

model correctness, any small differences in error should not be

taken as meaningful. How can one select a model, or decipher

meaning from the collection of models?

Perhaps if the collection of models provided some consen-

sus on which ROIs were meaningful, then we could use that

information to develop our functional connectivity network.

Figure 12 shows how often each ROI (column) appeared in

the 100 models generated for each subject (row) on each task.

Although these matrices are similar to those found in Figure

5, the ROI counts corresponds to how often they appeared

in all 100 models, not how often they appeared in the top

models for each subject. There are two main observations

to be made from Figure 12. First, there is no overwhelming

consistency of ROIs between the subjects. There are some

ROIs that appear to be more prevalent in all subjects’ models

than others, but it would be difficult to draw strong conclusions

from this. This inconsistency corresponds to observations

about intersubject variability [30] and could explain why the

nonlinear models do not generalize between subjects as well

as the linear models. This is also interesting since, given the

resolution of the brain being studied (30 ROIs), one would

expect some level of consistency. It is difficult to conclude

why this inconsistency would happen. It could be the result of

low quality models, noisy data, or that there really is this much

of a difference in the functional connectivity networks between

these subjects. The second observation is that when focusing

on specific subjects (rows), there is again, in general, no

overwhelming consistency in which ROIs are prevalent in all

models generated for each subject and task. These differences

are also difficult to account for. It could be the result of low

quality models or that more than one ROI can explain the

same phenomenon. One could try to develop subject specific

functional connectivity networks from this information, but

this would likely require arbitrary thresholding.

Further, we have generated seemingly high quality models

based on error values, but how can one select a single model

from the collection and expect it to be representative of the

underlying system? A more concerning question regarding

typical practices in the neuroscience literature is: how can one

generate a single linear model and expect it to be representative

of the underlying system?

VI. CONCLUSIONS AND FUTURE WORK

Nonlinear models of functional connectivity were generated

with symbolic regression. These models were built from real

fMRI data obtained from the Human Connectome Project.

The nonlinear models were found to contain fewer rela-

tionships than many linear models. The nonlinear models

had different ROIs than the linear and contained nonlinear

relationships — something not possible with traditional linear

tools. The authors do caution the reader from expecting the

nonlinear models as generated by GP to be exact models of

the underlying phenomenon and only recommend extracting

neuroscientific meaning from the presence of ROIs and the

type of relationship (linear vs. nonlinear).



Fig. 10: For each subject, the number of the 100 nonlinear models generated that were better than the best linear model when applied to unseen data was calculated and the

distributions were plotted. Bins (x-axis) represent the number of nonlinear models better than the best linear. The bin height (y-axis) corresponds to the number of subjects.

Fig. 11: Similar to Figure 6, this matrix shows the MAE values obtained by applying
the best model on the unseen data from every subject/task to all other datasets and

averaged over all subjects performing the same task.

Nonlinear models obtained low errors, were better than most

linear models, and were never significantly worse than the best

linear models when applied to data they were fit to.

The nonlinear models were unable to fit unseen data from

other subjects as well as the traditional linear models (intersub-

ject generalization). However, the linear models were capable

of fitting other subject’s data from unrelated tasks well. This

may be a consequence of the linear models not fitting task

specific nuances, but more general properties of the fMRI data.

Additionally, the neuroscience literature already acknowledges

that it is difficult to create effective intersubject generalizing

models given the variability in functional connectivity models

between subjects [30].

Although our motivation is descriptive models, testing

model predictive ability allows us to evaluate model correct-

ness. Many nonlinear models fit unseen data from the same

subject better than linear models (intrasubject generalization);

however, the analysis did introduce bias and would require

additional data for confirmation. Unfortunately additional data

is not available and is a common limitation in neuroscience.

In an attempt to simulate additional unseen data, the more

general nonlinear models were applied to data from different

subjects. These nonlinear models significantly improved the

intersubject generalizability of the nonlinear models, but the

linear models still generalized between subjects better.

This work presents the problem of model selection, which

is an idea related to complex systems in general. In the end, a

large collection of seemingly high quality nonlinear and linear

models (based on acceptable error metrics) was obtained.

These models had similarities, but had no strong consensus

on ROI and relationship type. Since the goal is to discover the

underlying functional connectivities and not to find the model

with the lowest error, it is difficult to intelligently select any

model, whether linear or nonlinear. At the very least however,

it would seem better to have a collection of models rather than

a single linear model — something GP delivers.

This idea is related to a phenomenon seen and informally

discussed in deep learning. When creating deep networks with

a large set of parameters, it would be nearly impossible to

find the optimal layout. However, by increasing the size of

the search space through deep networks, we seemingly create

many sufficiently good layouts that surprisingly generalize

very well. In other words, it seems that by increasing the

complexity of the search space, we increase the number of

good enough models.

Further, it relates to the idea of biological degeneracy —

multiple independent systems performing the same function

under certain conditions [31], [30]. Functional degeneracy

has been observed in neural populations [32], [30], and it

is believed to play a significant role in the robustness and

evolvability of complex systems in general. Although it is

perhaps optimistic to suggest that our nonlinear models are

different as a consequence of degeneracy, we emphasize it

here to highlight a question: is the search for a single model

fundamentally flawed?

Although similar work has shown that the nonlinear models

do not overfit data any more than the linear [17], further

investigation into generalizability is required. It is necessary

to obtain additional data with multiple recordings from each

subject performing each task. This would allow for a training,

validation, and testing analysis to eliminate bias. Effect size

should be analysed in addition to the statistical significance

reported here. Performing various important measures on the

the ROIs would improve the analysis over the simple feature

count used in this work. An investigation into model consen-

sus (Figure 12) could yield stronger evidence of functional

connectivities. This could be achieved with some methods of

thresholding, filtering, and data smoothing. Building functional

connectivity models from multiple subjects’ data may yield

better intersubject generalization.
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